News

  • 0
  • 0

Hexagonal Boron Nitride is 10 Times Stronger Than Graphene

Since 2022, Russia-Ukraine geopolitical conflicts have intensified, and global energy prices have risen sharply, with international natural gas prices hitting historic highs. As the most important transitional energy source in the transition from fossil energy to non-fossil energy, the share of natural gas in primary energy has increased from 14.6% in 1965 to 24.7% in 2020.  The global gas price indices showed a unilateral downward trend from 2018, bottomed out in 2020, and remained low for a long time. However, since July 2020, the global gas prices have gradually fluctuated upward, and the impact of geopolitical events made the Dutch TTF gas price even hit record highs repeatedly.

An analyst of a securities company believes that the core catalyst of this round of global gas market lies in the lack of investment in upstream oil and gas resources caused by long-term low prices. Since 2020, although the epidemic has led to a decline in demand, the decline in supply has been faster, resulting in a large inventory consumption. In 2021, demand will recover faster than supply (the supply-side is less sensitive to prices, which will be reflected in investment).  

As the world's two largest gas boron nitride are also expected to change significantly.

Hexagonal boron nitride (H-BN) is a two-dimensional layered broadband-gap insulating material with good heat resistance, chemical stability, and dielectric properties. It is widely used in electronic devices.

Hexagonal boron nitride is structurally similar to graphene, consisting of a planar lattice of atoms arranged in interconnected hexagons. The only difference is that in graphene, all atoms are carbon, whereas, in H-BN, each hexagon contains three nitrogen atoms and three boron atoms.




Carbon-carbon bonds are among the strongest, so graphene is theoretically much stronger than H-BN. The strength and elastic modulus of the two materials are similar, and h-BN is slightly lower in comparison: graphene has a strength of about 130GPa and young's modulus of about 1.0TPa; The strength and modulus of H-BN are 100GPa and 0.8 TPA, respectively.
Despite its excellent mechanical properties, graphene has low crack resistance, which means graphene is brittle.
 
In 1921, British engineer Griffiths published a theoretical study of fracture mechanics, describing the failure of brittle materials and the relationship between the size of cracks in materials and the force required to make them grow. For hundreds of years, scientists and engineers have used this theory to predict and define the toughness of materials.
In 2014, a study by Professor Jun Lou and his team at Rice University showed that graphene's fracture toughness is consistent with Griffith's theory of fracture mechanics: when the stress applied to graphene is greater than the force holding it together, the cracks propagate, And the energy difference is released during crack propagation. 
H-bn is also thought to be vulnerable, given its structural similarity to graphene. However, this is not the case.
 
The scientists found that H-BN is 10 times more ductile than graphene. 
A team led by Prof. Jun Lou of Rice University and Prof. Hua Jian Gao of Nanyang Technological University in Singapore has found that the brittle H-BN is 10 times stronger than graphene in cracking resistance.  This finding runs counter to Griffith's fracture theory, and such anomalies have never been observed before in two-dimensional materials.  The related research results were published in Nature with the title "Intrinsic Toughening and stable crack propagation in Hexagonal Boron nitride". 
 
Mechanism Behind H-BN's Extraordinary Toughness 
To find out why, the team applied stress to the H-BN sample, using scanning electron microscopes and transmission electron microscopes to see as much as possible how the cracks occurred. After more than 1,000 hours of experiments and subsequent theoretical analysis, they discovered the mystery. 



Although graphene and H-Bn may be structurally similar, boron and nitrogen atoms are not the same, so there is an asymmetric arrangement of hexagonal lattice intrinsic in H-BN, unlike the carbon hexagon in graphene. That is, in graphene, the cracks tend to go straight through the symmetrical hexagonal structure from top to bottom, opening the bond like a zipper. The hexagonal structure of H-BN is slightly asymmetric due to the stress contrast between boron and nitrogen, and this inherent asymmetry of the lattice causes cracks to bifurcate, forming branches. 
And if the crack bifurcates, that means it's rotating. The existence of this steering crack requires additional energy to further promote the crack propagation, which makes the crack more difficult to propagate and effectively enhances the toughness of the material. That's why H-Bn shows more elasticity than graphene.
 
Due to its excellent heat resistance, chemical stability, and dielectric properties, H-BN has become an extremely important material for two-dimensional electronic and other 2-bit devices, not only as a support base but also as an insulating layer between electronic components. Today, h-BN's toughness makes it an ideal choice for flexible electronics and is important for the development of flexible 2D materials for applications such as two-dimensional electronics.
In the future, as well as being used in flexible electronic textiles, h-BN could also be used as flexible electronic skin and implantable electronics that can be connected directly to the brain.
 
Boron Nitride BN Powder Price
The price is influenced by many factors including the supply and demand in the market, industry trends, economic activity, market sentiment, and unexpected events.
If you are looking for the latest BN powder price, you can send us your inquiry for a quote. ([email protected])
 
Boron Nitride BN Powder Supplier
Luoyang Tongrun Nano Technology Co. Ltd. (TRUNNANO) is a trusted global chemical material supplier & manufacturer with over 12-year-experience in providing super high-quality chemicals and nanomaterials including 
silicon powder, nitride powder, graphite powder, zinc sulfide, calcium nitride, 3D printing powder, etc.
If you are looking for high-quality BN powder, please feel free to contact us and send an inquiry. ([email protected])
 

Greece will hand over Iranian oil it intercepted from a Russian-flagged tanker to the United States at the request of the U.S. Justice Department, Greek port police said recently, AFP reported. The decision angered Tehran.  

In April, Greek authorities reportedly seized a Russian oil tanker, the Pegas, which was said to be heading to the Turkish port of Marmara.  

Reports say the ship was docked in Calistos Bay with a crew of several people said to be Russian. The Greek coast guard said the ship had been renamed the Lana.  

The report notes that the European Union imposed sanctions on Russia after the conflict broke out in February. Greek authorities seized the tanker in accordance with European Union sanctions.  

According to information at the time, the tanker was carrying 115,000 tons of Iranian oil.  

Iran's Ports and Maritime Organization strongly protested Greece's decision, calling it an "international bandit." "The Islamic Republic of Iran will not give up its legitimate rights and expects the Greek government to abide by its international obligations in the area of navigation and shipping," it said in a statement on its website.  

Iran's Foreign Ministry, through the International Maritime Organization, called on the Greek government to release the tanker and its crew overnight, adding that "the Americans discharged their cargo," the report said.  

Athens did not immediately respond to the Iranian protest and gave no further details about the oil on board or how it was handed over to the United States, the report said.

The boron nitride price is expected to increase in the next few days affected by the change in supply and demand markets.

Inquiry us

Our Latest News

What are the functions of boron nitride

An Overview of Boron Ntride Powder Industrial-grade Boron nitride is pure white ceramic with the same hexagonal crystal structure to graphite. The material can stand temperatures as high as 2,000 degrees Celsius. Depending on the grade,its dielectri…

What is Tin disulfide

What's Tin disulfide? Tin disulfide (also known as Tin) is an inorganic compound that has a chemical formula of SnS2. It is an orange hexagonal flake with it's CdI2 crystal form. It is not soluble in water, however, it is soluble in aqua regia , and…

Introduction to the characteristics of tungsten carbide

What Is Tungsten Carbide? In general there is no doubt that tungsten carbide is a fantastic material for creating light bulb filaments and glass-to-metal seals. It is essential to know what the distinctions are between strength, malleability, and ot…