News

  • 0
  • 0

What is Zinc Sulfide

If you are looking for high-quality products, please feel free to contact us and send an inquiry, email: brad@ihpa.net



Zinc Sulfide:

Its chemical formula is ZnS. The molecular weight of the compound is 134.72. It is created by interacting through ionic interactions with zinc ions, (Zn2+), and sulfur ions, (S2-). In the crystal, the sulfur ions form a regular tetrahedron around the zinc ion. The sulfur ion occupies the center of the tetrahedron. This structure can also be described as a facecentered cubic system where zinc and sulfur ions occupy respective vertex and facecentered positions in the lattice.

Zinc Sulfide (also known as Zinc Sulfide) is a white, insoluble solid. It is not soluble with water, but it is soluble with bases and acids. Zinc sulfide's density is 3.98 g/cc, with a melting and boiling temperature of 1 350 degrees C. The light transmission range of zinc sulfide is between 200 and 400nm. The chemical properties are relatively stable but they can react under certain circumstances. Zinc sulfide is oxidized, for instance, when it comes into contact with an oxidizing substance. In an environment that is alkaline, zinc hydroxide can be formed by the reaction of zinc sulfide with hydroxide.

Application - Zinc Sulfide:

Zinc sulfide, also known as zinc sulfur, is a significant compound. The unique crystal structure and chemical and physical characteristics of zinc sulfide have made it a widely used compound in numerous fields. We will discuss the various applications of zinc sulfide.

1. Manufacturers of phosphor

Zinc Sulfide has a variety of uses, including in fluorescent screens. Zinc sulfide, used in the manufacture of fluorescent screens, can be made into phosphors which, upon being excited by external lights, emit different colors. When producing fluorescent lights, zinc-sulfide also makes phosphors which emit visible light upon being excited by ultraviolet radiation.


2. Manufacturing of photoelectric conversion materials

Zinc Sulfide, a material used for photoelectric conversion, can also be used in the manufacture of solar cells. Zinc sulfide converts light energy into electrical power in solar cells. The photoelectric efficiency of zinc sulfide, combined with its low cost, makes it a material that has wide applications.


3. Drug Manufacturing

Zinc Sulfide, because of its biological activity, has many applications in pharmaceutical production. Zinc sulfide is used in the manufacture of anti-malarials, including zincsulfate as well as zinc acetate. The zinc sulfide used can be used for the production of preservatives and fungicides.


4. There are many companies that manufacture catalysts.

Zinc sulfide can act as a catalyst for the creation of other compounds like zinc acetate acetone and methylisobutylketone. Zinc sulfur is a highly active and selective catalyst that can be used in the manufacturing process.


5. Optical device manufacturing

Due to its high transparency, zinc sulfur is used widely in optical devices. Zinc sulfide is used, for instance, in optical fiber communication to produce optical fiber preforms. Additionally, zinc sulfide may be used to make optical devices like optical Windows and lenses.

Method of Production of Zinc Sulfide

1. Method of chemical precipitation

The chemical precipitation method is the most common way to prepare zinc sulfide. The zinc sulfide was obtained by mixing zinc salt with sulfur salt.

Preparation Solution: Dissolve a suitable amount of zinc salt and sulfur salt into water to create a solution.

Precipitation reaction : the above solution is heated in stirring conditions and an appropriate amount precipitating agent is then added to precipitate both zinc ions (and sulfur ions) to generate zinc-sulfide precipitation.

Filtration: After the reaction solution has been filtered, a filtrate is obtained that contains zinc-sulfide precipitation.

Cleaning: The filtered precipitation of zinc sulfide is cleaned with alcohol in order to remove impurities.

Drying: After washing the zinc sulfide it is precipitated then dried to get zinc sulfide.

The benefits of chemical precipitation include low cost and high purity. The disadvantages of this method are that it requires a large number of detergents and precipitating agents. Also, the waste liquid generated must be treated and disposed before being discharged, which can cause environmental pollution.


2. Synthesis of solid phases at high temperatures

Traditional methods for the preparation of zinc sulfide include high-temperature solid phase reactions. A solid reaction between zinc oxide or sulfur-containing elements and zinc at high temperature produced the powdered form of zinc sulfide.

Ingredients: To make raw materials, the appropriate amount of carbon powder, zinc oxide powder, and sulfur dioxide powder is mixed.

Pretreatment: Raw materials undergo a pretreatment at high temperature to ensure that all components react and generate zinc vapor.

Synthesis: Zinc and sulfur are combined at high temperature to form zinc sulfide.

Collection: The powdered zinc sulfide is collected and processed accordingly.

The high-temperature, solid-phase synthesis is characterized by high purity, excellent crystallinity, as well as a relatively straightforward process. The method does require high temperatures, and it uses a lot of carbon and sulfur powders, which can be harmful to the environment.


3. Soluthermal method

The solvothermal process is a method that has been developed to prepare zinc sulfide. This method uses high-pressure and high-temperature organic solvents to dissolve zinc and sulfur salts. It then generates zinc powder by hydrothermal reaction.

Solution preparation: Dissolve the required amount of zinc salt and sulfur in the organic solvent.

High-temperature reaction under high pressure: The solution is placed in the high-temperature reactor and hydrothermal reactions are carried out at high temperatures and high pressures to produce zinc-sulfide.


The generated zinc powder is collected, and treated as required.

The solvothermal technique has a number of advantages including high purity products, good crystallinity and a relatively straightforward process. This method allows the user to adjust the product properties by using different organic solvants and reaction conditions. The method is not without its limitations. It requires high-temperature, pressure equipment. And the recovery and disposal process of organic solvants require certain costs and technologies.

It is important to consider the advantages and limitations of different methods of production of zinc sulfide, and to select the appropriate methods according to actual conditions and needs. During the production, it is important to take into account environmental and safety issues and implement appropriate environmental protection technologies.

Prospect Market of Zinc Sulfide

1. phosphor market prospects

Zinc sulfur is widely used to manufacture phosphor. Phosphor can absorb light while emitting different colors. It is used widely in the display, lighting, photovoltaic, and other fields. Due to the constant development of science, phosphors' application fields are expanding. Zinc sulfide has become an important material for phosphors, and the market is growing.


2. Photoelectric conversion materials: market outlook

Zinc sulfur is also widely used for the production of photoelectric materials. Photoelectric materials convert light energy to electricity. Solar cells is the most common use. The demand for solar panels is increasing as renewable energy becomes more important. The cost of photoelectric converter materials has also been steadily decreasing, as technology continues to improve.


3. Market prospects for drug manufacturing

Zinc Sulfide has also been used in the pharmaceutical industry. The pharmaceutical industry is a massive market. As people become more health-conscious, the demand for drugs increases. Zinc Sulfide can be used for antimalarial drug production and has a biological activity.


4. Prospects for the manufacturing of catalysts

Zinc sulfur is used for some catalyst production. Catalysts are substances that accelerate chemical reaction and have a variety of applications, including in the fields of environmental protection, pharmaceuticals, and chemical industries. As technology continues to develop, so do the demands for catalytic performance and selectivity. This provides more opportunities for using zinc sulfide as a catalyst.


5. The optical device market is expected to grow at a rapid rate.

Zinc sulfur is also widely employed in the manufacture of optical devices. The optical device has multiple applications, including communication, imaging and optical storage. It can modulate and transmit the light. As technology continues to develop, performance requirements for optical products are increasing. This provides more opportunities to apply zinc sulfide when manufacturing optical devices.

Price of Zinc Sulfide Poudre :

Many factors influence the price of a product, such as the economic activity in the industry, the demand and supply on the market and the sentiments and expectations of the market.

You can contact us for a quotation if you want to know the current price of zinc sulfide.

Zinc Sulfide Powder Supplier :

Technology Co. Ltd., () is an experienced global chemical material manufacturer and supplier with over 12 years' experience. They provide super-high-quality chemicals, such as silicon powders, nitride particles, graphite particles, zinc sulfide grains, boron grains, and 3D printing powders.

Contact us today to send an inquiry if you need high-quality zinc sulfur powder.

Inquiry us

High Purity Iron powder Fe Powder CAS 7439-89-6, 99%

High Purity Copper Powder Cu Powder CAS 7440-50-8, 99%

High Purity Tin Sn Powder CAS 7440-31-5,99%

High Purity Nano Ag Silver powder cas 7440-22-4, 99%

High Purity Molybdenum Powder Mo Powder CAS 7439-98-7, 99.9%

High Purity Colloidal Silver Nano Silver Solution CAS 7440-22-4

High Purity Boron Carbide B4C Powder CAS 12069-32-8, 99%

High Purity Silicon Si powder CAS 7440-21-3, 99%

High Purity Tungsten Carbide WC Powder Cas 12070-12-1, 99%

High Purity 3D Printing Inconel 625 Powder

High Purity Spherical Graphite C Powder CAS 7782-42-5, 99.9%

High Purity Copper Oxide CuO powder CAS 1317-38-0, 99.9%

High Purity Colloidal Gold Nano Gold Solution CAS 7440-57-5

High purity Boron Powder Amorphous Boron Powder CAS 7440-42-8, 95%

CAS 4485-12-5 Lithium Stearate Powder

CAS 1592-23-0 Calcium Stearate Powder

CAS 557-04-0 Magnesium Stearate Powder

High Purity Zinc Sulfide ZnS Powder CAS 1314-98-3, 99.99%

High Purity Silicon Nitride Si3N4 Powder CAS 12033-89-5, 99%

High Purity Aluminum Nitride AlN Powder CAS 24304-00-5, 99.5%

Our Latest News

CLC blocks and foamed concrete lead the reform of the construction industry

CLC Blocks and foamed Concrete, two new energy-saving materials that are environmentally friendly, lead the construction industry reform. As environmental awareness continues to improve, the construction industry is now focusing on more energy-effici…

What is the role and mechanism of water

On construction sites or in home improvements, we see concrete being used a lot. It is important to add a water-reducing additive to concrete. Why is it necessary to add water-reducing agents to concrete and what are the functions and mechanisms of t…

soil curing agent

New road construction material: Soil curing agent is a great choice to invest in low-carbon, environmentally friendly materials Road construction is essential to urban development and transportation. The traditional method of road construction has…